如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为
(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式和直线BD解析式;
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
如图,矩形ABCD中, AB=4,BC=2,点P是射线DA上的一动点,DE⊥CP,垂足为E,EF⊥BE与射线DC交于点F.
(1)若点P在边DA上(与点D、点A不重合).
①求证:△DEF∽△CEB;
②设AP=x,DF=y,求与
的函数关系式,并写出
的取值范围;
(2)当△EFC与△BEC面积之比为3︰16时,线段AP的长为多少?(直接写出答案,不必说明理由).
已知二次函数中,其函数
与自变量
之间的部分对应值如下表所示:
x |
…… |
0 |
1 |
2 |
3 |
4 |
5 |
…… |
y |
…… |
4 |
1 |
0 |
1 |
4 |
9 |
…… |
(1)当x=-1时,y的值为;
(2)点A(,
)、B(
,
)在该函数的图象上,则当
时,
与
的大小关系是;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】
五一假期中,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行直线长跑比赛,比赛时小明的速度始终是250米/分,小亮的速度始终是300米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:
(1)请直接写出小明和小亮比赛前的速度,并说出图中点A(1,500)的实际意义;
(2)请在图中的()内填上正确的值,并求两人比赛过程中y与x之间的函数关系式;
(3)若小亮从家出门跑了11分钟时,立即按原路以比赛时的速度返回,则小亮再经过多少分钟时两人相距75米?
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,
≈1.732).
已知关于x的一元二次方程有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由;
(3)若此方程的两个实数根的平方和为30,求实数k.