游客
题文

阅读材料:
例:说明代数式 x2+1 + (x-3)2+4 的几何意义,并求它的最小值.
解: x2+1 + (x-3)2+4 =" (x-0)2+12" + (x-3)2+22 ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 (x-0)2+12 可以看成点P与点A(0,1)的距离, (x-3)2+22 可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B="3" 2 ,即原式的最小值为3 2 .

根据以上阅读材料,解答下列问题:
(1)代数式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)的距离之和.(填写点B的坐标)
(2)代数式 x2+49 + x2-12x+37 的最小值为.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

先化简,再求值.
,其中=

已知等腰三角形的底为,腰比底长,求等腰三角形的周长.

数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长.

如图,在等腰Rt△ABC中,AB=AC,CE是∠ACB的平分线,ED⊥BC,垂足为D.

(1)请写出图中所有的等腰三角形(不包括△ABC);
(2)请判断AD与CE是否垂直,并说明理由;
(3)如果AB=2,求AC+AE的值.

如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC.

(1)求证:△BDA≌△CEA;
(2)请判断△ADE是什么三角形,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号