已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)(3分)求该反比例函数的解析式;
(2)(3分)将一次函数y=3x-2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)(2分)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.
动手实验:利用矩形纸片(图1)剪出一个正六边形纸片;利用这个正六边形纸片做一个如图(2)无盖的正六棱柱(棱柱底面为正六边形);
(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2)在(1)的前提下,当矩形的长为2时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率?(矩形纸片的利用率=
无盖正六棱柱的表面积/矩形纸片的面积)
某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断线段AB与AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
甲、乙两商场同时开业,为了吸引顾客,都举办有奖酬宾活动,凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外,其他全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表).
(1)请你用列表法(或画树状图)求出摸到一红一白的概率;
(2)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.