某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差x/℃ |
10 |
11 |
13 |
12 |
8 |
发芽数y /颗 |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
一个车间为了规定工时定额.需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:
零件数x/个 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
加工时间y/分 |
62 |
68 |
75 |
81 |
89 |
95 |
102 |
108 |
115 |
122 |
(1)y与x是否具有线性相关关系?
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?
为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量Y(单位:千件)对于价格x(单位:千元)的反应,得数据如下:
x/千元 |
50 |
70 |
80 |
40 |
30 |
90 |
95 |
97 |
y/千件 |
100 |
80 |
60 |
120 |
135 |
55 |
50 |
48 |
(1)若y与x之间具有线性相关关系,求y对x的回归直线方程;
(2)若成本x=y+500,试求:
①在盈亏平衡条件下(利润为零)的价格;
②在利润为最大的条件下,定价为多少?
在某种产品表面进行腐蚀性刻线实验,得到腐蚀深度y与腐蚀时间x之间相应的一组观察值,如下表:
x/s |
5 |
10 |
15 |
20 |
30 |
40 |
50 |
60 |
70 |
90 |
120 |
y/μm |
6 |
10 |
10 |
13 |
16 |
17 |
19 |
23 |
25 |
29 |
46 |
用散点图及相关系数两种方法判断x与y的相关性.
下表是对某市8所中学学生是否吸烟进行调查所得的结果:
吸烟学生 |
不吸烟学生 |
|
父母中至少有一人吸烟 |
816 |
3 203 |
父母均不吸烟 |
188 |
1 168 |
(1)在父母至少有一人吸烟的学生中,估计吸烟学生所占的百分比是多少?
(2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少?
(3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由.
(4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?