如图所示,木块质量,它以速度
水平地滑上一辆静止的平板小车,已知小车质量
,木块与小车间的动摩擦因数为
,木块没有滑离小车,地面光滑,g取10
,求:
①木块相对小车静止时小车的速度的大小;
②从木块滑上小车到木块相对于小车刚静止时,小车移动的距离.
如图所示,在倾角θ=30°的斜面上,固定一金属框,宽l=0.25 m,接入电动势E=12 V、内阻不计的电池.垂直框面放置一根质量m=0.2 kg的金属棒ab,它与框架间的动摩擦因数μ=,整个装置放在磁感应强度B=0.8 T、垂直框面向上的匀强磁场中。当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?(框架与金属棒的电阻不计,g取10 m/s2)
如图所示,光滑绝缘细杆竖直放置,细杆右侧距杆0.3m处有一固定的点电荷Q,A、B是细杆上的两点,点A与Q、点B与的连线与杆的夹角均为=37°。一中间有小孔的带电小球穿在绝缘细杆上滑下,通过A 点时加速度为零,速度为3m/s,取g=10m/s2,求
(1)小球下落到B点时的加速度
(2)B点速度的大小。
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2。今有一质量为m、电量为q的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,求:
⑴粒子的速度v
⑵速度选择器的电压U2
⑶粒子在B2磁场中做匀速圆周运动的半径R。
如图所示,虚线MN为电场、磁场的分界线,匀强电场E=103V/m,方向竖直向上,电场线与边界线MN成45°角,匀强磁场垂直纸面向里,磁感应强度B=1T,在电场中有一点A,A点到边界线MN的垂直距离AO=10cm,将比荷为
的带负电粒子从A处由静止释放(电场、磁场范围足够大,粒子所受重力不计).
(1)粒子第一次在磁场中运动的轨道半径;
(2)粒子从释放到下一次进入到电场区域所需要的时间;
(3)粒子第二次进、出磁场处两点间的距离.
如图甲所示,足够长的光滑U形导轨处在垂直于导轨平面向上的匀强磁场中,其宽度L =1m,所在平面与水平面的夹角为=53o,上端连接一个阻值为R=0.40 Ω的电阻.今有一质量为m=0.05 kg、有效电阻为r=0.30 Ω的金属杆ab沿框架由静止下滑,并与两导轨始终保持垂直且良好接触,其沿着导轨的下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2
(忽略ab棒运动过程中对原磁场的影响),试求:
(1)磁感应强度B的大小;
(2)金属杆ab在开始运动的1.5 s内,,通过电阻R的电荷量;
(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量。