古希腊著名的毕达哥拉斯学派把,这样的数称为“三角形数”,而把1,4,9,
这样的数称为“正方形数”.如图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为 (填序号)
①13=3+10; ②25=9+16;
③36=15+21; ④49=18+31;
⑤64="28+36"
记定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上“中值点”的个数为________.
已知函数f(x)=x-
sinx-
cosx的图象在点A(x0,y0)处的切线斜率为1,则tanx0=________.
曲线f(x)=ex-f(0)x+
x2在点(1,f(1))处的切线方程为________.
如图,函数g(x)=f(x)+x2的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.
一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为 y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________ min,容器中的沙子只有开始时的八分之一.