如图,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
先化简,再求值:(-1)¸
,其中a=
.
先化简:.若结果等于
,求出相应a的值.
如图,中,
,
,过点
作
∥
,点
、
分别是射线
、线段
上的动点,且
,过点
作
∥
交线段
于点
,联接
,设
面积为
,
.
(1)用的代数式表示
;
(2)求与
的函数关系式,并写出定义域;
(3)联接,若
与
相似,求
的长.
解下列一元二次方程:
(1); (2)
.
如图所示,△ABC中,∠A=96°。
(1)BA1平分∠ABC,CA1平分∠ACD,请你求∠A1的度数;
(2)BA2平分∠A1BC,CA2平分∠A1CD,请你求∠A2的度数;
(3)依次类推,写出∠与∠
的关系式。
(4)小明同学用下面的方法画出了α角:作两条互相垂直的直线MN、PQ,垂足为O,作∠PON的角平分线OE,点A、B分别是OE、PQ上任意一点,再作∠ABP的平分线BD,BD的反向延长线交∠OAB的平分线于点C,那么∠C就是所求的α角,则α的度数为.