化简:[]÷
如图,抛物线的顶点为 ,与 轴交于点 ,点 为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线 是过点 且垂直于 轴的定直线,若抛物线上的任意一点 到直线 的距离为 ,求证: ;
(3)已知坐标平面内的点 ,请在抛物线上找一点 ,使 的周长最小,并求此时 周长的最小值及点 的坐标.
如图, 是 的直径, 和 是它的两条切线,过 上一点 作直线 ,分别交 、 于点 、 ,且 .
(1)求证:直线 是 的切线;
(2)求证: .
某水果商店销售一种进价为40元 千克的优质水果,若售价为50元 千克,则一个月可售出500千克;若售价在50元 千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元 千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
如图,过 对角线 与 的交点 作两条互相垂直的直线,分别交边 、 、 、 于点 、 、 、 .
(1)求证: ;
(2)顺次连接点 、 、 、 ,求证:四边形 是菱形.
如图,在平面直角坐标系中,直线 与直线 相交于点 ,并分别与 轴相交于点 、 .
(1)求交点 的坐标;
(2)求 的面积;
(3)请把图象中直线 在直线 上方的部分描黑加粗,并写出此时自变量 的取值范围.