在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为、
(km),
、
与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为 km, ;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)甲、乙两船同在行驶途中,若两船距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;(本题2分)
(2)求证:AE是⊙O的切线;(本题2分)
(3)当BC=4时,求劣弧AC的长.(本题3分)
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹)(本题3分)
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.(本题4分)
如图,已知点A(0,6),B(4,-2),C(7,),过点B作x轴的垂线,交直线AC于点E,点F与点E关于点B对称.
(1)求证:∠CFE=∠AFE;
(2)在y轴上是否存在这样的点P,使△AFP与△FBC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由.
在△ABC中,点D在线段AC上,点E在BC上,且DE∥AB将△CDE绕点C按顺时针方向旋转得到△(使
<180°),连接
、
,设直线
与AC交于点O.
(1)如图①,当AC=BC时,:
的值为______;
(2)如图②,当AC=5,BC=4时,求:
的值;
(3)在(2)的条件下,若∠ACB=60°,且E为BC的中点,求△OAB面积的最小值.
已知关于x的方程(k为常数,且k>0).
(1)证明:此方程总有两个不等的实数根、
;
(2)设此方程的两个实数根为、
,若
,求k的值.