某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正、减产记为负):
(1)根据记录的数据可知星期四生产自行车多少辆?
(2)根据记录的数据可知本周实际生产自行车多少辆?
(3)产量最多的一天比产量最少的一天多生产自行车多少辆?
(4)该厂实行每周计件工资制,每生产一辆可得60元,若超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减 |
+5 |
-2 |
-4 |
+13 |
-10 |
+16 |
-9 |
先化简,再求值:,其中
.
如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.
(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)
如图,经过点C(0,﹣4)的抛物线(
)与x轴相交于A(﹣2,0),B两点.
(1)a0,0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=.
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
如图,一次函数的图象与反比例函数
的图象相交于A(2,1),B两点.
(1)求出反比例函数与一次函数的表达式;
(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.