如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4, 0),点B的坐标是(0, b)(b > 0). P是直线AB上的一个动点,作 PC⊥x轴,垂足为C. 记点P关于y轴的对称点为P′(点P′不在y轴上),连结PP′,P′A,P′C. 设点P的横坐标为a,
(1)当b=3时,
①求直线AB的解析式;
②若点P′ 的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与P′C的交点为D. 当P′D:DC=1:3时,求a的值;
(3)若点P在第一象限,是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由。
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A:非常赞同;B:赞同但要有时间限制;C:无所谓;D:不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式
如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.