阅读下列材料,然后解答后面的问题。
我们知道方程有无数组解,但在实际生活中我们往往只需要求出其正整数解。例:由
,得
,(
、
为正整数)
则有
.
又为正整数,则
为正整数.
由2与3互质,可知:为3的倍数,从而
,代入
.
的正整数解为
问题:(1)请你写出方程的一组正整数解:
(2)若为自然数,则满足条件的
值有 个
A.2 | B.3 | C.4 | D.5 |
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一点(不与点A、B重合),连结CO并延长CO交⊙O于点D,连结AD.
(1)求弦长AB的长度;(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.
如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
已知二次函数的图象以为顶点,且过点
.
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;
如图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.
已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.