如图(a)所示,两根足够长的水平平行金属导轨相距为L=0.5 m,其右端通过导线连接阻值R=0.6Ω的电阻,导轨电阻不计,一根质量为m=0.2 kg、阻值r=0.2Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,金属棒与导轨间的动摩擦因数m=0.5。整个装置处在竖直向下的匀强磁场中,取g=10m/s2。若所加磁场的磁感应强度大小恒为B,通过小电动机对金属棒施加水平向左的牵引力,使金属棒沿导轨向左做匀加速直线运动,经过0.5s电动机的输出功率达到P=10W,此后电动机功率保持不变。金属棒运动的v~t图像如图(b)所示,试求:
(1)磁感应强度B的大小;
(2)在0~0.5s时间内金属棒的加速度a的大小;
(3)在0~0.5s时间内电动机牵引力F与时间t的关系;
(4)若在0~0.3s时间内电阻R产生的热量为0.15J,则在这段时间内电动机做的功。
分如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场。在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电场,场强大小为E.一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当速度方向沿x轴正方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力。
⑴求磁感应强度B的大小;
⑵粒子在第一象限内运动到最高点时的位置坐标;
⑶若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角=30°时,求粒子从射入磁场到最终离开磁场的时间t.
分如图所示,光滑圆弧轨道最低点与光滑斜面在B点用一段光滑小圆弧平滑连接,可认为没有能量的损失,圆弧半径为R=0.5m,斜面的倾角为450,现有一个可视为质点、质量为m=0.1kg的小球从斜面上A点由静止释放,通过圆弧轨道最低点B时对轨道的压力为6N.以B点为坐标原点建立坐标系如图所示(g=l0m/s2)求:
(1)小球最初自由释放位置A离最低点B的高度h.
(2)小球运动到C点时对轨道的压力的大小;
(3)小球从离开C点至第一次落回到斜面上,落点的坐标是多少?
如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N 点坐标(-l,0),MN与y轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。现有一质量为m、电荷量为e的电子,从虚线MN上的P点,以平行于x 轴正方向的初速度v0射人电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成角,此后,电子做匀速直线运动,进人磁场并从圆形有界磁场边界上Q点(
,-l)射出,速度沿x轴负方向。不计电子重力。求:
(1)匀强电场的电场强度E的大小?
(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?
(3)圆形有界匀强磁场区域的最小面积S是多大?
在一半径r=5×108m的某星球的表面做一实验,装置如图所示,在一粗糙的水平面上放置一半圆形的光滑竖直轨道,半圆形轨道与水平面相切。一质量为m=1kg的小物块Q(可视为质点)在一水平向右的力F=2N作用下从A由静止开始向右运动,作用一段时间t后撤掉此力,物体在水平面上再滑动一段距离后滑上半圆形轨道.若到达B点的速度为m/s时,物体恰好滑到四分之一圆弧D处。已知A、B的距离L=3.0m,小物块与水平面间的动摩擦因数μ=0.2,半圆形轨道半径R=0.08m。
(1)求该星球表面的重力加速度g和该星球的第一宇宙速度v1;
(2)若物体能够到达C点,求力F作用的最短距离x。
如图甲所示,水平放置的平行金属板A和B的距离为d,它们的右端安放着垂直于金属板的靶MN,现在A、B板上加上如图乙所示的方波形电压,电压的正向值为,反向电压值为
,且每隔T/2变向1次。现将质量为m的带正电,且电荷量为q的粒子束从AB的中点O以平行于金属板的方向OO′射入,设粒子能全部打在靶上而且所有粒子在A、B间的飞行时间均为T。不计重力的影响,试问:
(1)定性分析在t=0时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况。
(2)在距靶MN的中心O′点多远的范围内有粒子击中?
(3)要使粒子能全部打在靶MN上,电压的数值应满足什么条件?(写出
、m、d,q、T的关系式即可)