游客
题文

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼的高度(如图),他们先在点C测得教学楼AB的顶点A的仰角为37°,然后向教学楼前进10米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,

为了打造重庆市“宜居城市”,某公园进行绿化改造,准备在公园内的一块四边形ABCD空地里栽一棵银杏树(如图),要求银杏树的位置点P到点A、D的距离相等,且到线段AD的距离等于线段a的长.请用尺规作图在所给图中作出栽种银杏树的位置点P.(要求不写已知、求作和作法,只需在原图上保留作图痕迹).

如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.

如图,在△ABC中,AB=AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F
求证:DE=DF.
证明:∵AB=AC,∴∠B=∠C①.
在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF②.∴DE=DF③.
上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.
(2)请你写出另一种证明此题的方法.

解方程:x﹣2=x(x﹣2)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号