△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲.乙两种剪法,哪种剪法所得的正方形面积大?请说明理由。
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为
(如图2),则
;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为
,继续操作下去……,则第10次剪取时,
;
(3)求第10次剪取后,余下的所有小三角形的面积之和。
如图,用火柴棒按以下方式搭小鱼,是课本上多次出现的数学活动.
(1)搭n条小鱼需要火柴棒________根;
(2)计算说明150根火柴棒最多可以搭出多少条小鱼?
(3)若搭n朵某种小花需要火柴棒(3n+20)根,现有一堆火柴棒,可以全部用上搭出m条小鱼,也可以全部用上搭出m朵小花,求m的值及这堆火柴棒的数量.
从2开始,连续的偶数相加,它们和的情况如下表:
加数n的个数 |
和S |
1 |
2=1×2 |
2 |
2+4=6=2×3 |
3 |
2+4+6=12=3×4 |
4 |
2+4+6+8=20=4×5 |
5 |
2+4+6+8+10=30=5×6 |
… |
… |
当n个最小的连续偶数(从2开始)相加时,它们的和与n之间有什么样的关系,请用公式表示出来,并由此计算:
①2+4+6+…+202的值;
②126+128+130+…+300的值.
国庆长假里,小华和爸爸、妈妈一家三口去旅游,甲旅行社说:“大人买全票,小孩半价优惠”.乙旅行社说:“大人、小孩全部按票价的八折优惠”.若原票价为α元,问小华家选择哪个旅行社合算,请说出理由.
用代数式表示阴影部分的面积.
观察图中的棋子:
(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?
(2)用含n的代数式表示第n个图形的棋子个数;
(3)求第20个图形需棋子多少个?