商场服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装共盈利1200元,设每件童装降价x元,那么应满足的方程是( ).
A.(40+x) (20-2x) =1200 | B.(40-2x) (20+x) ="1200" |
C.(40-x) (20+2x) =1200 | D.(40+2x) (20-x) =1200 |
在实属范围内有意义,则x的取值范围是()
A.x≥0 | B.x≤0 | C.x>0 | D.x<0 |
化简的结果正确的是()
A.-2 | B.2 | C.±2 | D.4 |
如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:……,白甲壳虫爬行的路线是:
……,那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )
A.0 | B. 1 | C.![]() |
D.![]() |
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(3)可以用来解释(a+b)2-(a-b)2=4ab.那么通过图(4)面积的计算,验证了一个恒等式,此等式是()
A.a2-b2=(a+b)(a-b) |
B.(a-b)2=a2-2ab+b2 |
C.(a+b)2=a2+2ab+b2 |
D.(a-b)(a+2b)=a2+ab-b2 |
如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()
A.4条 | B. 3条 | C. 2条 | D.1条 |