游客
题文

计算:  

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知均为锐角,且。求的度数。
小聪、小明、小慧三位同学都通过构造一个几何图形,使这个代数计算问题快速、简捷地得到了解决,请你思考他们的方法,选择其中一个图形,解答上述问题。(也可以自己构造一个不同的图形,并完成解答)

如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.


(1)理解与作图:在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
(2)计算与猜想:求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
(3)启发与证明:如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.

已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.

(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比.请你计算这个“W”图案的高与宽的比到底是多少?

如图,A,B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角

(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=°;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系,直接写出结论.

观察图形,解答问题:

(1)按下表已填写的形式填写表中的空格:


图①
图②
图③
三个角上三个数的积
1×(-1)×2=-2
(-3)×(-4)×(-5)=-60

三个角上三个数的和
1+(-1)+2=2
(-3)+(-4)+(-5)=-12

积与和的商
-2÷2=-1,


请用你发现的规律求出图④中的数y和图⑤中的数x.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号