通过随机询问100名性别不同的小学生是否爱吃零食,得到如下的列联表:
男 |
女 |
总计 |
|
爱好 |
10 |
40 |
50 |
不爱好 |
20 |
30 |
50 |
总计 |
30 |
70 |
100 |
P(K2≥k) |
0.10 |
0.05 |
0.025 |
k |
2.706 |
3.841 |
50.24 |
由K2=算得K2=
≈4.762
参照附表,得到的正确结论()
A.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”
C.有97.5%以上的把握认为“是否爱吃零食与性别有关”
D.有97.5%以上的把握认为“是否爱吃零食与性别无关”
为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表.
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
则至少有()的把握认为喜爱打篮球与性别有关.
A.95% B.99% C.99.5% D.99.9%
下列四个命题中
①设有一个回归方程y=2﹣3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“∃x0∈R,x02﹣x0﹣1>0“的否定¬P:“∀x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(﹣l<X<0)=﹣p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有()
附:本题可以参考独立性检验临界值表
P(K2≥k) |
0.5 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
||
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.535 |
7.879 |
10. |
||
828 |
A.1个 B.2个 C.3个 D.4个
以下四个命题中:
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2;
④对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为()
A.1 | B.2 | C.3 | D.4 |
春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
做不到“光盘”能做到“光盘”
男 |
45 |
10 |
|
女 |
30 |
15 |
|
P(K2≥k) |
0.10 |
0.05 |
0.025 |
k |
2.706 |
3.841 |
5.024 |
附:
参照附表,得到的正确结论是()
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”