如图,在△ABC中,AD、CE是两条高,连结DE,如果BE=2,EA=3,CE=4,在不添加任何辅助线和字母的条件下,请写出三个正确结论 (要求:分别为边的关系,角的关系,三角形相似的关系),并对其中三角形相似的结论给予证明.
边的关系 ;
角的关系 ;
三角形相似的关系 .
证明:
如图,四边形ABCD是正方形,对角线AC与BD相交于点O,若AO=2,求:
(1)∠ABD的度数;
(2)BD的长;
(3)正方形ABCD的面积.
操作示例
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,沿虚线BD、EG剪开后,可以按图1所示的移动方式拼接为四边形BNED.从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED.
实践与探究
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.
①证明:四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);
(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.
如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.
如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为点G,求证:AE=BF.
如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,求DE的长.