游客
题文

如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA、BC,试判断直线OA与线段BC的位置关系并说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

如图,在平面直角坐标系中,一次函数 y = 1 2 x + 5 y = - 2 x 的图象相交于点 A ,反比例函数 y = k x 的图象经过点 A

(1)求反比例函数的表达式;

(2)设一次函数 y = 1 2 x + 5 的图象与反比例函数 y = k x 的图象的另一个交点为 B ,连接 OB ,求 ΔABO 的面积.

2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位: m ) 绘制成不完整的频数分布表和频数分布直方图.

学生立定跳远测试成绩的频数分布表

分组

频数

1 . 2 x < 1 . 6

a

1 . 6 x < 2 . 0

12

2 . 0 x < 2 . 4

b

2 . 4 x < 2 . 8

10

请根据图表中所提供的信息,完成下列问题:

(1)表中 a =    b =   

(2)样本成绩的中位数落在  范围内;

(3)请把频数分布直方图补充完整;

(4)该校共有1200名学生,估计该学校学生立定跳远成绩在 2 . 4 x < 2 . 8 范围内的有多少人?

欧拉 ( Euler ,1707年 ~ 1783 年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数 V ( Vertex ) 、棱数 E ( Edge ) 、面数 F ( Flatsurface ) 之间存在一定的数量关系,给出了著名的欧拉公式.

(1)观察下列多面体,并把下表补充完整:

名称

三棱锥

三棱柱

正方体

正八面体

图形

顶点数 V

4

6

8

 6 

棱数 E

6

  

12

  

面数 F

4

5

  

8

(2)分析表中的数据,你能发现 V E F 之间有什么关系吗?请写出关系式:  

解不等式组 4 ( x + 1 ) 7 x + 13 , x - 4 < x - 8 3 , 并求它的所有整数解的和.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号