已知

(1)若
,求实数
的值;
(2)若
,求实数
的取值范围.
已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.
(1)求出函数f(x)在R上的解析式;
(2)写出函数的单调区间.
已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.
(1)若a=2,求M∩(∁RN);
(2)若M∪N=M,求实数a的取值范围.
(1)若xlog32=1,试求4x+4﹣x的值;
(2)计算:(2
)
﹣(﹣9.6)0﹣(3
)
+(1.5)﹣2+(
×
)4.
已知函数f(x)=x3+x.
(1)判断函数f(x)的单调性与奇偶性,(不用证明结论).
(2)若f(cosθ﹣m)+f(msinθ﹣2)<0对θ∈R恒成立,求实数m的取值范围.
已知向量
=(cosα,sinα),
=(cosβ,sinβ),|
﹣
|=
.
(1)求cos(α﹣β)的值;
(2)若0<α<
,﹣
<β<0,且sinβ=﹣
,求sinα.