如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标;
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.
若正比例函数y=k1x的图象与反比例函数y=的图象有一个交点坐标是(﹣2,4)]
(1)求这两个函数的表达式;
(2)求这两个函数图象的另一个交点坐标.
如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=,且
,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:
经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).
(1)求k的值;
(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.
已知抛物线的对称轴是直线
.
(1)求证:;
(2)若关于x的方程的一个根为4,求方程的另一个根.