已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
过点作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
已知直线, (1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x轴相交; (4)系数满足什么条件时是x轴; (5)设为直线上一点, 证明:这条直线的方程可以写成.
已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.
用坐标法证明三角形的中位线长为其对应边长的一半.
判断下列A(-1,-1),B(0,1),C(1,3)三点是否共线,并给出证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号