观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种的规律可知第5个图形共有________个正方形。
如图, 和 相交于点 , , .求证: .
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点 在 的左侧),且 , ,与 轴交于 ,抛物线的顶点坐标为 .
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)过点 作直线 轴,交 轴于点 ,点 是抛物线上 、 两点间的一个动点(点 不与 、 两点重合), 、 与直线 分别交于点 、 ,当点 运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
如图, 是 的弦,过 的中点 作 ,垂足为 ,过点 作直线 交 的延长线于点 ,使得 .
(1)求证: 是 的切线;
(2)若 , ,求 的面积.
如图,在 中, , 、 分别是边 、 的中点,过点 作 交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若四边形 的面积为24, ,求 的长.
某自行车经销商计划投入7.1万元购进100辆 型和30辆 型自行车,其中 型车单价是 型车单价的6倍少60元.
(1)求 、 两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进 型车多少辆?