杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF.
解不等式组:
计算:;
如图,抛物线F:的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:
,抛物线F′与x轴的另一个交点为C.
⑴当a = 1,b=-2,c = 3时,求点C的坐标(直接写出答案);
⑵若a、b、c满足了
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.
如图15,在△ABC和△PQD中,AC =" k" BC,DP =" k" DQ,∠C =∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连结EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.