游客
题文

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500㎏,销售单价每涨1元,月销售量就减少10㎏,针对这种水产品,请解答以下问题:
⑴当销售单价定为每千克55元时,计算销售量与月销售利润。
⑵设销售单价为每千克元,月销售利润为元,求的关系式;
⑶当销售单价为多少时,月销售利润最大?最大利润是多少?
⑷商店想在销售成本不超过10000元的情况下,使得月销售利润刚好达到8000元,销售单价应为多少?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知方程组和方程组有相同的解,则m的值是.

已知方程组的解是,则a+b的值为.

已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
求这个二次函数的解析式;
点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
在(2)的情况下,求四边形ACQD的面积.

如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系;
如图2,若四边形ABCD是平行四边形, AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E.
①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论;
②当时,上述结论成立;
时,上述结论不成立.

已知:关于的方程有两个不相等的实数根.
的取值范围;
抛物线轴交于两点.若且直线:经过点,求抛物线的函数解析式;
在(2)的条件下,直线:绕着点旋转得到直线,设直线轴交于点,与抛物线交于点不与点重合),当时,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号