如图,在平面直角坐标系中有一边长为l的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OBl为边作第三个正方形OBlB2C2,照此规律作下去,则点B2012的坐标为
计算 a2b3(ab2)-2= .
方程 的解是 .
一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为
.请你填空:a=,c=,EF=米.
若把它看作是圆的一部分,则可构造图形(如图2)计算如下:
设圆的半径是r米,在Rt△OCB中,易知,r=14.5
同理,当水面上升3米至EF,在Rt△OGF中可计算出GF=米,即水面宽度EF=米.
如图,△ABC, △DCE,△CEF都是正三角形, 且B,C,E,F在同一直线上,A,D,G也在同一直线上,设△ABC, △DCE,△CEF的面积分别为.当
时,
_____________
在△ABC中,E是AB上一点,AE=2,BE=3,AC=4,在AC上取一点D,使以A、D、E为顶点的三角形与△ABC相似,则AD的 值是.