游客
题文

(本小题满分14分)已知定义在上的函数满足,且对任意
(Ⅰ)判断上的奇偶性,并加以证明.
(Ⅱ)令,求数列的通项公式.
(Ⅲ)设的前项和,若恒成立,求的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 等比数列 数列综合
登录免费查看答案和解析
相关试题

设数列 A : a 1 , a 2 , a N ( N ) .如果对小于 n ( 2 n N ) 的每个正整数 k 都有 a k < a n 则称 n 是数列 A 的一个 " G 时刻" G ( A ) 是数列 A 的所有 " G 时刻" 组成的集合.

(1)对数列 A: - 2 , 2 , - 1 , 1 , 3 , 写出 G ( A ) 的所有元素;

(2)证明:若数列 A 中存在 a n 使得 a n > a 1 , 则 G ( A ) ;

(3)证明:若数列 A 满足 a n - a n - 1 ( n = 2 , 3 , N ) 则G(A)的元素个数小于 a N - a 1

已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的离心率为 3 2 , A ( a , 0 ) , B ( 0 , b ) , O ( 0 , 0 ) , Δ OAB 的面积为 1 .

(1) 求椭圆 C 的方程;

(2) 设 P 的椭圆 C 上一点, 直线 PA y 轴交于点 M , 直线 PB x 轴交于点 N .

求证: | AN | | BM | 为定值.

设函数 f ( x ) = x e a - x + bx , 曲线 y = f ( x ) 在点 ( 2 , f ( 2 ) ) 处的切线方程为 y = e - 1 x + 4 ,

(1)求 a b 的值;

(2)求 f ( x ) 的单调区间;

如图, 在四棱锥 P - ABCD 中, 平面 PAD 平面 ABCD , PA PD , PA = PD , AB AD , AB = 1 , AD = 2 , AC = CD = 5 .

(1) 求证: PD 平面 PAB ;

(2) 求直线 PB 与平面 PCD 所成角的正弦值;

(3) 在棱 PA 上是否存在点 M , 使得 BM / / 平面 PCD ? 若存在, 求 AM AP 的值; 若不存在, 说明理由.

A、B、C三个班共有 100 名学生, 为调查他们的体育锻炼情况,通过分层抽样获得了部分学生 一周的锻炼时间, 数据如下表(单位:小时);

A 班

66 . 5

7

7 . 58






B 班

6

7

8

9

10

11

12


C 班

3

4 . 5

6

7 . 5

9

10 . 5

12

13 . 5

(1)试估计 C 班的学生人数;

(2) 从 A 班和 C 班抽出的学生中, 各随机选取一人, A 班选出的人记为甲, C 班选出的人记 为乙, 假设所有学生的锻炼时间相对独立, 求该周甲的锻炼时间比乙的钗炼时间长的概率;

(3) 再从 A、B、C三个班中各随机抽取一名学生, 他们该周的锻炼时间分别是 7, 9, 8.25 (单位:小时), 这3个新数据与表格中的数据构成的新样本的平均数记 μ 1 , 表格中数据的平均数记为 μ 0 , 试判断 μ 0 μ 1 的大小, (结论不要求证明)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号