在平面直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
.
(Ⅰ)写出C的方程;
(Ⅱ)设直线与C交于A,B两点.k为何值时
?此时
的值是多少?
选修4—1:几何证明选讲。如图,PA切圆O于点A,割线PBC经过圆心O,
OB=PB=1,OA绕点O逆时针旋转到OD.
(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
设函数
(1)已知x=1是函数f(x)的极值点,求p的值;
(2)求函数的极值点;
(3)当时,若对任意的x>0,恒有
,求
的取值范围.
已知椭圆方程为,斜率为
的直线
过椭圆的上焦点且与椭圆相交于
,
两点,线段
的垂直平分线与
轴相交于点
.
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)
分成六段,后画出如下图的频率分布直方图,观察图形,回答
下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的合格率(60分及60分以上为合格);
(Ⅲ)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的
学生中选一人,求此人成绩优秀的概率.
如图,已知长方体底面
为正方形,
为线段
的中点,
为线段
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)设的中点,当
的比值为多少时,
并说明理由.