某校300名优秀学生,中考数学得分范围是70—119(得分都是整数),为了了解该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图.
分组 |
频数 |
频率 |
109.5—119.5 |
15 |
0.30 |
99.5--109.5 |
10 |
0.20 |
89.5—99.5 |
18 |
|
79.5—89.5 |
|
|
69.5—79.5 |
3 |
0.06 |
合计 |
|
1.00 |
请你根据给出的图标解答:
(1)填写频率分布表中未完成部分的数据;
(2)指出在这个问题中的总体和样本容量;
(3)求出在频率分布直方图中直角梯形ABCD的面积;
(4)请你用,可以得到哪些信息?(写一条即可)
(巴中)如图,在平面直角坐标系xOy中,二次函数(
)的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
(广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若,且OC=4,求PA的长和tanD的值.
(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线
顶点E在直线l上.
(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;
(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;
(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
(广元)经统计分析.某市跨河大桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞.此时车流速度为0千米/时;当车流密度不超过20辆/千米,车流速度为80千米/时.研究表明:当时,车流速度v是车流密度x的一次函数.
(1)求大桥上车流密度为100辆/千米时的车流速度;
(2)在某一交通时段.为使大桥上的车流速度大于60千米/时且小于80千米/时,应把大桥上的车流密度控制在什么范围内?
(广元)如图,AB是⊙O的弦,D为半径OA的中点.过D作CD⊥OA交弦AB于点E,交⊙O于点F.且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=.求⊙O的半径.