如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD与H,BC=BH=2.动点从点
出发,以每秒1个单位的速度沿
运动到点
停止,在运动过程中,过点
作
交折线
于点
,将纸片沿直线
折叠,点
、
的对应点分别是点
、
。设
点运动的时间是
秒(
)。
(1)当点和点
重合时,求运动时间
的值;
(2)在整个运动过程中,设或四边形
与梯形
重叠部分面积为
,请直接写出
与
之间的函数关系式和相应自变量
的取值范围;
(3)平移线段,交线段
于点
,交线段
。在直线
上存在点
,使
为等腰直角三角形。请求出线段
的所有可能的长度。
如图,在菱形 中, , ,连接 .
(1)求 的长;
(2)点E为线段 上一动点(不与点B,D重合),点 在边 上,且 .
①当 时,求四边形 的面积;
②当四边形 的面积取得最小值时, 的值是否也最小?如果是,求 的最小值;如果不是,请说明理由.
已知直线 经过点 和点 .
(1)求直线 的解析式;
(2)若点 在直线l上,以P为顶点的抛物线G过点 ,且开口向下.
①求m的取值范围;
②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点 也在G上时,求G在 的图象的最高点的坐标.
某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE, .
(1)求 的长;
(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.
条件①: ;条件②:从D处看旗杆顶部A的仰角 为 .
注:如果选择条件①和条件②分别作答,按第一个解答计分.
参考数据: .
如图,AB是⊙O的直径,点C在⊙O上,且 .
(1)尺规作图:过点O作AC的垂线,交劣弧 于点D,连接CD(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,求点O到AC的距离及 的值.
已知 .
(1)化简 ;
(2)若关于 的方程 有两个相等的实数根,求 的值.