小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.
(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)
(2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)
如图①是一张矩形纸片,按以下步骤进行操作:
(Ⅰ)将矩形纸片沿 折叠,使点 落在 边上点 处,如图②;
(Ⅱ)在第一次折叠的基础上,过点 再次折叠,使得点 落在边 上点 处,如图③,两次折痕交于点 ;
(Ⅲ)展开纸片,分别连接 、 、 、 ,如图④.
(探究)
(1)证明: ;
(2)若 ,设 为 , 为 ,求 关于 的关系式.
如图,在 中, , 是斜边 上的中线,以 为直径的 分别交 、 于点 、 ,过点 作 ,垂足为 .
(1)若 的半径为 , ,求 的长;
(2)求证: 与 相切.
某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.
频数分布表
组别 |
销售数量(件) |
频数 |
频率 |
|
|
3 |
0.06 |
|
|
7 |
0.14 |
|
|
13 |
|
|
|
|
0.46 |
|
|
4 |
0.08 |
合计 |
|
1 |
请根据以上信息,解决下列问题:
(1)频数分布表中, 、 ;
(2)补全频数分布直方图;
(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.
已知抛物线 与 轴交于 , 两点, 为抛物线的顶点,抛物线的对称轴交 轴于点 ,连结 ,且 ,如图所示.
(1)求抛物线的解析式;
(2)设 是抛物线的对称轴上的一个动点.
①过点 作 轴的平行线交线段 于点 ,过点 作 交抛物线于点 ,连结 、 ,求 的面积的最大值;
②连结 ,求 的最小值.
点 是平行四边形 的对角线 所在直线上的一个动点(点 不与点 、 重合),分别过点 、 向直线 作垂线,垂足分别为点 、 .点 为 的中点.
(1)如图1,当点 与点 重合时,线段 和 的关系是 ;
(2)当点 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
(3)如图3,点 在线段 的延长线上运动,当 时,试探究线段 、 、 之间的关系.