一个质量为1500 kg行星探测器从某行星表面竖直升空,发射时发动机推力恒定,发射升空后8 s末,发动机突然间发生故障而关闭;如图19所示为探测器从发射到落回出发点全过程的速度图象;已知该行星表面没有大气,不考虑探测器总质量的变化;求:
(1)探测器在行星表面上升达到的最大高度;
(2)探测器落回出发点时的速度;
(3)探测器发动机正常工作时的推力。
(8分)如图所示,是一透明半圆柱体的横截面,O为横截面的圆心,其半径为R,折射率为,OA水平且垂直截面, 从A点射出一条光线AB经折射后水平射出半圆柱体,已知OA=R,光速为c.求:
(ⅰ)光在透明半圆柱体中的传播速度;
(ⅱ)入射点B到OA的垂直距离BC。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图所示,在竖直平面建立直角坐标系xOy,y轴左侧存在一个竖直向下的宽度为d的匀强电场,右侧存在一个宽度也为d的垂直纸面向里的匀强磁场,磁感应强度为B,现有一个质量为m,带电荷量为+q的微粒(不计重力),从电场左边界PQ以某一速度垂直进入电场,经电场偏转后恰好从坐标原点以与x轴正方向成θ=30°夹角进入磁场:
(1)假设微粒经磁场偏转后以垂直MN边界射出磁场,求:电场强度E为多少?
(2)假设微粒经磁场偏转后恰好不会从MN边界射出磁场,且当粒子重新回到电场中时,此时整个x<0的区域充满了大小没有改变但方向逆时针旋转了30°角的匀强电场。求微粒从坐标原点射入磁场到从电场射出再次将射入磁场的时间?
如图所示,在水平面上固定一个高度为h1="0.55" m的平台ABCD,其中AB部分是L=1.6m的水平轨道,BCD为光滑的弯曲轨道,轨道最高处C处可视为半径为r=4m的小圆弧,现一个质量为m ="1kg" 的滑块以初速度v0=5m/s从A点向B点运动,当滑块滑到平台顶点C处后作平抛运动,落到水平地面且落地点的水平射程为x=0.8m,轨道顶点距水平面的高度为h2 =0.8m,(平抛过程中未与平台相撞)(取g=10m/s2)求:
(1)滑块在轨道顶点处对轨道的压力?
(2)滑块与木板间的动摩擦因数μ?
如图所示小电风扇额定电压为6V,先将小电风扇加1.5V电压,发现电风扇并不转动,此时电流为0.3A,求:
(1)求电风扇电机的电阻为多少?
(2)若电阻不变,则当电压为6V时,此时电流为0.4A,求电风扇的电功率和热功率;
(3)简述此过程能量是如何转化的?