如图1,已知二次函数 、 、 为常数, 的图象过点 和点 ,函数图象最低点 的纵坐标为 ,直线 的解析式为 .
(1)求二次函数的解析式;
(2)直线 沿 轴向右平移,得直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 ,把 沿直线 折叠,当点 恰好落在抛物线上点 时(图 ,求直线 的解析式;
(3)在(2)的条件下, 与 轴交于点 ,把 绕点 逆时针旋转 得到△ , 为 上的动点,当△ 为等腰三角形时,求符合条件的点 的坐标.
如图,在正方形 中,点 、 分别是边 、 的中点, .
(1)求证: ;
(2)若点 、 分别在射线 、 上同时向右、向上运动,点 运动速度是点 运动速度的2倍, 是否成立(只写结果,不需说明理由)?
(3)正方形 的边长为4, 是正方形 内一点,当 ,求 周长的最小值.
学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?
如图, 在 中, ,以 为直径作 交 于点 , 为 的中点, 连接 并延长交 的延长线于点 .
(1) 求证: 是 的切线;
(2) 若 , ,求 直径的长 .
如图,直线 为常数, 与双曲线 为常数, 的交点为 、 , 轴于点 , , .
(1)求 的值;
(2)点 在 轴上,如果 ,求 点的坐标.