解方程组:
某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人 后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的 继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口 时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程 (单位: 和行驶时间 (单位: 之间的函数关系如图所示.
请结合图象解决下面问题:
(1)学校到景点的路程为 ,大客车途中停留了 , ;
(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?
(3)小轿车司机到达景点入口时发现本路段限速 ,请你帮助小轿车司机计算折返时是否超速?
(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待 分钟,大客车才能到达景点入口.
初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为 ;
请你结合统计图解答下列问题:
(1)全班学生共有 人;
(2)补全统计图;
(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?
(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?
如图,以 的边 为直径画 ,交 于点 ,半径 ,连接 , , ,设 交 于点 ,若 .
(1)求证: 是 的切线;
(2)若 ,求图中阴影部分的面积.
如图,抛物线 与 轴交于 、 两点, 点坐标为 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)点 在 轴下方的抛物线上,过点 的直线 与直线 交于点 ,与 轴交于点 ,求 的最大值;
(3)点 为抛物线对称轴上一点.
①当 是以 为直角边的直角三角形时,直接写出点 的坐标;
②若 是锐角三角形,直接写出点 的纵坐标 的取值范围.
如图, 是 的直径,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,作直径 ,过点 的切线交 的延长线于点 ,作 于点 ,连接 .
(1)求证: 平分 ;
(2)求证: ;
(3)当 且 时,求劣弧 的长度.