(本小题满分12分)
设实数x,y满足不等式组:
(1)求作点(x,y)所在的平面区域;
(2)设,在(1)所求的区域内,求函数
的最大值和最小值。
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=
。
(1) 该小组已经测得一组、
的值,tan
=1.24,tan
=1.20,请据此算出H的值;
(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与
之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,
最大?
如图,在直三棱柱中,
,
,
是
的中点.
(1)求证:平行平面
;
(2)求二面角的余弦值;
(3)试问线段上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
设函数定义域为
,且
.
设点是函数图像上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.
(1)写出的单调递减区间(不必证明);
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形
面积的最小值.
定义数列,(例如
时,
)满足
,且当
(
)时,
.令
.
(1)写出数列的所有可能的情况;
(2)设,求
(用
的代数式来表示);
(3)求的最大值.
某海域有、
两个岛屿,
岛在
岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线
,曾有渔船在距
岛、
岛距离和为8海里处发现过鱼群。以
、
所在直线为
轴,
的垂直平分线为
轴建立平面直角坐标系。
(1)求曲线的标准方程;
(2)某日,研究人员在、
两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),
、
两岛收到鱼群在
处反射信号的时间比为
,问你能否确定
处的位置(即点
的坐标)?