游客
题文

已知:如图,四边形ABCD是平行四边形,△ADE和△BCF都是等边三角形.求证:BD和EF互相平分.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

解方程组:

先化简,再求值(x+2)2-2(x+2)(x-4)+(x-3)(x+3);其中x=-l

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P´(点P´不在y轴上),连接PP´,P´A,P´C.设点P的横坐标为a.

(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(﹣1,m),求m的值;
(2)若点P在第一象限,记直线AB与P´C的交点为D.当P´D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.

如图,抛物线yax2ca>0)经过梯形ABCD的四个顶点,梯形的底ADx轴上,其中A(-2,0),B(-1, -3).
(1)求抛物线的解析式;
(2)点My轴上任意一点,当点MAB两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使SPAD=4SABM成立,求点P的坐标.

是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:.我们把它们称为根与系数关系定理. 如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:

请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形.
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号