利用“等积”计算或说理是一种很巧妙的方法, 就是一个面积从两个不同的角度表示。如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长。
解题思路:利用勾股定理易得AB=5利用,可得到CD=2.4
请你利用上述方法解答下面问题:
(1) 如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长。
(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的
任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
(1)写出命题“全等三角形的面积相等”的逆命题,并判断真假;
(2)若该命题的逆命题为真命题,请证明;若该命题的逆命题为假命题,请举出反例.
解下列不等式、不等式组,并将其解集在数轴上表示出来:
(1),
(2)
作图题:(要求保留作图痕迹,不写做法)
(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);
(2)连结BE,若AC=10,AB=6,求△ABE的周长.
某天昆明市交警大队的一辆警车在东西方向的街上巡视,警车从钟楼A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-5,+4,-2
(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?
(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?
“*”是规定的一种运算法则:,
(1)求3*4的值;
(2)求 的值。