某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示
部门 |
A |
B |
C |
D |
E |
F |
G |
人数 |
1 |
1 |
2 |
4 |
2 |
2 |
3 |
每人所创的年利润 |
20 |
5 |
2.5 |
2.1 |
1.5 |
1.5 |
1.2 |
根据表中的信息填空:
(1) 该公司每人所创年利润的平均数是 万元.
(2) 该公司每人所创年利润的中位数是 万元.
(3) 你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?
答
课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;
类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).
二次函数 的图象交 轴于原点 及点 .
感知特例
(1)当 时,如图1,抛物线 上的点 , , , , 分别关于点 中心对称的点为 , , , , ,如表:
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
①补全表格;
②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 .
形成概念
我们发现形如(1)中的图象 上的点和抛物线 上的点关于点 中心对称,则称 是 的“孔像抛物线”.例如,当 时,图2中的抛物线 是抛物线 的“孔像抛物线”.
探究问题
(2)①当 时,若抛物线 与它的“孔像抛物线” 的函数值都随着 的增大而减小,则 的取值范围为 ;
②在同一平面直角坐标系中,当 取不同值时,通过画图发现存在一条抛物线与二次函数 的所有“孔像抛物线” 都有唯一交点,这条抛物线的解析式可能是 (填“ ”或“ ”或“ ”或“ ”,其中 ;
③若二次函数 及它的“孔像抛物线”与直线 有且只有三个交点,求 的值.
如图1,四边形 内接于 , 为直径,点 作 于点 ,连接 .
(1)求证: ;
(2)若 是 的切线, ,连接 ,如图2.
①请判断四边形 的形状,并说明理由;
②当 时,求 , 与 围成阴影部分的面积.
图1是疫情期间测温员用"额温枪"对小红测温时的实景图,图2是其侧面示意图,其中枪柄 与手臂 始终在同一直线上,枪身 与额头保持垂直.量得胳膊 , ,肘关节 与枪身端点 之间的水平宽度为 (即 的长度),枪身 .
(1)求 的度数;
(2)测温时规定枪身端点 与额头距离范围为 .在图2中,若测得 ,小红与测温员之间距离为 .问此时枪身端点 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据: , , ,
为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为 的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位: 如下:
甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;
乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.
甲厂鸡腿质量频数统计表
质量 |
频数 |
频率 |
|
2 |
0.1 |
|
3 |
0.15 |
|
10 |
|
|
5 |
0.25 |
合计 |
20 |
1 |
分析上述数据,得到下表:
统计量 厂家 |
平均数 |
中位数 |
众数 |
方差 |
甲厂 |
75 |
76 |
|
6.3 |
乙厂 |
75 |
75 |
77 |
6.6 |
请你根据图表中的信息完成下列问题:
(1) , ;
(2)补全频数分布直方图;
(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位: 在 的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?