两人要去某风景区游玩,每天某—时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆乍的状况比第一辆好,他就上第二辆车;如果第二辆不比第—辆好,他就上第三辆车.若把这三辆车的舒适程度分为上、中、下三等.请问:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么?
如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以
cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.
(1)求∠OAB的度数.
(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?
(3)求出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.
某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量
y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.
(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式;
(2)当销售单价为 多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?
如图,一次函数的图象分别交
轴、
轴于
两点,
为
的中点,
轴于点
,延长
交反比例函数
的图象于点
,且
(1)求的值;
(2)连结求证:四边形
是菱形.
据统计某外贸公司2012年、2013年的进出口贸易总额分别为3300万元和3760万元, 其中2013年的进口和出口贸易额分别比2012年增长20%和10%.
(1)试确定2012年该公司的进口和出口贸易额分别是多少万元;
(2)2014年该公司的目标是:进出口贸易总额不低于4200万元, 其中出口贸易额所占比重不低于60%, 预计2014年的进 口贸易额比2013年增长10%, 则为完成上述目标,2014年的出口贸易额比2013年至少应增加多少万元?
如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC =" EB" .
(1)求证:△CEB∽△CBD ;
(2)若CE = 3,CB="5" ,求DE的长.