如图所示,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。现小球在F="20" N的竖直向上的拉力作用下,从A点静止出发向上运动,已知杆与球间的动摩擦因数μ为
。试求:
(1)小球运动的加速度a1;
(2)若F作用1.2s后撤去,小球上滑过程中距A点最大距离sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为2.25 m的B点。
(15分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的质点, 选手抓住绳由静止开始摆动,此时绳与竖直方向夹角
=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取重力加速度
,
,

(1)求选手摆到最低点时对绳拉力的大小F;
(2)若绳长l="2m," 选手摆到最高点时松手落入手中。设水对选手的平均浮力
,平均阻力
,求选手落入水中的深度
;
(3)若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
在某些恒星内,3个α粒子可以结合成一个
核,已知
核的质量为1.99502×10-26kg, α粒子的质量为6.64672×10-27kg,真空中的光速c=3×108m/s,计算这个反应中所释放的核能(结果保留一位有效数字)。
(14分)如图所示,弧形轨道的下端与半径为R的圆轨道平滑连接。现在使小球从弧形轨道上端距地面2R的A点由静止滑下,进人圆轨道后沿圆轨道运动,轨道摩擦不计。
试求:
(1)小球到达圆轨道最低点B时的速度大小;
(2)小球在最低点B时对轨道的压力大小;
(3)小球在某高处脱离圆轨道后能到达的最大高度。
(14分)如图所示,在一宽度D="16" cm的区域内,同时存在相互垂直的匀强磁场B和匀强电场E,电场的方向竖直向上,磁场的方向垂直向外。一束带电粒子以速度
同时垂直电场和磁场的方向射入时,恰不改变运动方向。若粒子射入时只有电场,可测得粒子穿过电场时沿竖直方向向上偏移6.4 cm;若粒子射人时只有磁场,则粒子束离开磁场时偏离原方向的距离是多少?不计粒子的重力。
(10分)如图所示,两根平行且光滑的金属轨道固定在斜面上,斜面与水平面之间的夹角
,轨道上端接一只阻值为R=0.4
的电阻器,在导轨间存在垂直于导轨平面的匀强磁场,磁场的磁感应强度B=0.5 T,两轨道之间的距离为L=40cm,且轨道足够长,电阻不计。现将一质量为m="3" g,有效电阻为r=1.0
的金属杆ab放在轨道上,且与两轨道垂直,然后由静止释放,求:
(1)金属杆ab下滑过程中可达到的最大速率;
(2)金属杆ab达到最大速率以后,电阻器R每秒内产生的电热。