如图,一只甲虫在.的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其他甲虫。规定:向上、向右走为正,向下、向左走为负。如从A到B记为:(+1,+4),从B到A记为:
(-1,-4),括号内第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)填空:( , 4 ),
( , ),
( +1 ,—2 ),
(2)若这只甲虫的行走路线为
,请计算该甲虫走过的路程;
(3)若这只甲虫从A处去甲虫P处的行走路线一次为(+1,+2),(+2,—1),(—2,+3),(—1,—2),请在图中标出P的位置。
已知:如图,在中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
某校为了了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中m,n,p的值,并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?
解方程:.
(1)计算;;(2)化简:
.
复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.