如图所示,电源的电动势,电阻
,电动机绕组的电阻
,电键S1始终闭合。当电键S2断开时,电阻R1的电功率是525W;当电键S2闭合时,电阻R1的电功率是336W,求
(1)电源的内电阻;
(2)当电键S2闭合时流过电源的电流和电动机的输出功率。
如图所示,虚线左侧存在非匀强电场,MO是电场中的某条电场线,方向水平向右,长直光滑绝缘细杆CD沿该电场线放置。质量为m1、电量为+q1的A球和质量为m2、电量为+q2的B球穿过细杆(均可视为点电荷)。当t=0时A在O点获得向左的初速度v0,同时B在O点右侧某处获得向左的初速度v1,且v1>v0。结果发现,在B向O点靠近过程中,A始终向左做匀速运动。当t=t0时B到达O点(未进入非匀强电场区域),A运动到P点(图中未画出),此时两球间距离最小。静电力常量为k。
(1)求0~t0时间内A对B球做的功;
(2)求杆所在直线上场强的最大值;
(3)某同学计算出0~t0时间内A对B球做的功W1后,用下列方法计算非匀强电场PO两点间电势差:
设0~t0时间内B对A球做的功为W2,非匀强电场对A球做的功为W3,
根据动能定理 W2+W3=0
又因为 W2=−W1
PO两点间电势差
请分析上述解法是否正确,并说明理由。
如图所示,在水平地面上固定一倾角θ=37°、表面光滑且足够长的斜面体,物体A以v1=6m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看作质点,sin37°=0.6,cos37°=0.8,取g=10m/s2)求:
(1)物体A上滑到最高点所用的时间t;
(2)物体B抛出时的初速度v2;
(3)物体A、B间初始位置的高度差h.
如图均匀薄壁U形管,左管上端封闭,右管开口且足够长,管的截面积为S,内装有密度为r的液体。右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气。温度为T0时,左、右管内液面等高,两管内空气柱长度均为L,压强均为大气压强P0,重力加速度为g。现使左右两管温度同时缓慢升高,在活塞离开卡口上升前,左右两管液面保持不动,试求:
(1)右管活塞刚离开卡口上升时,右管封闭气体的压强P1;
(2)温度升高到T1为多少时,右管活塞开始离开卡口上升。
(3)温度升高到T2为多少时,两管液面高度差为L。
如图所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B点,C点是最低点,圆心角∠BOC=37°,D点与圆心O点等高,圆弧轨道半径R=1.0 m,现在一个质量为m=0.2 kg可视为质点的小物体,从D点的正上方E点处自由下落,DE距离h=1.6 m,小物体与斜面AB之间的动摩擦因数μ=0.5.取sin37°=0.6,cos37°=0.8,g=10 m/s2。求:
(1)小物体第一次通过C点时轨道对小物体的支持力N的大小;
(2)要使小物体不从斜面顶端飞出,斜面的长度LAB至少要多长;
(3)若斜面已经满足(2)要求,小物体从E点开始下落,直至最后在光滑圆弧轨道做周期性运动,在此过程中系统因摩擦所产生的热量Q的大小.
如图所示,一质量m=0.4kg的小物块,以V0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m。已知斜面倾角θ=30o,物块与斜面之间的动摩擦因数。重力加速度g取10 m/s2.
(1)求物块加速度的大小及到达B点时速度的大小。
(2)拉力F与斜面的夹角多大时,拉力F最小?拉力F的最小值是多少?