黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为 , , , 四个等级,设学习时间为 (小时), , , , ,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:
(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;
(2)本次抽样调查中,学习时间的中位数落在哪个等级内?
(3)表示 等级的扇形圆心角 的度数是多少?
(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.
如图,抛物线 的图象与 轴交于 , 两点,与 轴交于点 ,顶点为 .
(1)求此抛物线的解析式.
(2)求此抛物线顶点 的坐标和对称轴.
(3)探究对称轴上是否存在一点 ,使得以点 、 、 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的 点的坐标,若不存在,请说明理由.
如图,在 中, 为直径, 、 为圆上两点, 为圆外一点,且 .
(1)求证: 为 的切线.
(2)若 , ,求 的半径.
为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题
(1)本次抽样调查共抽取多少名学生?
(2)补全条形统计图.
(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.
(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?
(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).
据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过 ,在一条笔直公路 的上方 处有一探测仪,如平面几何图, , ,第一次探测到一辆轿车从 点匀速向 点行驶,测得 ,2秒后到达 点,测得 , ,结果精确到
(1)求 , 的距离.
(2)通过计算,判断此轿车是否超速.