同学们都知道,在相同的时刻,物高与影长成比例,某班同学要测量学校国旗的旗杆高度,在某一时刻,量得旗杆的影长是8米,而同一时刻,量得某一身高为1.5米的同学的影长为1米,求旗杆的高度是多少?
观察下列等式:
1×3+1=22
3×5+1=42
5×7+1=62
.......................................
请你按照上述三个等式的规律写出第④个、第⑤个等式;
请猜想,第n个等式(n为正整数)应表示为;
证明你猜想的结论.
如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.
(1)若AB=7,AC=5,求△ADE的周长;
(2)若∠ABC=∠ACB,AC=10,直接写出图中所有的等腰三角形并求△ADE的周长.
如图,AE,AD分别是△ABC的高和角平分线,且∠B=40°,∠C=60°,求∠BAD和∠DAE的度数.
先化简,再求值:,在0,2,3三个数中选一个使原式子有意义的数代入求值.
如图,△ABC的三个顶点的坐标分别是A(-2,3),B(-3,1),C(1,-2).
(1)直接写出点A、B、C关于y轴对称的点A’、B’、C’坐标: A’(,)、B’(,)、C’(,);
(2)在x轴上求作一点P,使PA+PB最短.(保留痕迹)