将长为1,宽为a的长方形纸片如图左那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图右那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).
(1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含a的代数式表示)
(2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简)
(3)假如第二次操作后,剩下的长方形恰好是正方形,则a的值是多少?
阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 ,可以通过因式分解把它转化为 ,解方程 和 ,可得方程 的解.
(1)问题:方程 的解是 , , ;
(2)拓展:用“转化”思想求方程 的解;
(3)应用:如图,已知矩形草坪 的长 ,宽 ,小华把一根长为 的绳子的一端固定在点 ,沿草坪边沿 , 走到点 处,把长绳 段拉直并固定在点 ,然后沿草坪边沿 、 走到点 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 .求 的长.
京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点 、 和点 、 ,先用卷尺量得 , ,再用测角仪测得 , ,求该段运河的河宽(即 的长).
如图,已知点 在反比例函数 的图象上,过点 作 轴,垂足是 , .一次函数 的图象经过点 ,与 轴的正半轴交于点 .
(1)求点 的坐标;
(2)若四边形 的面积是3,求一次函数 的表达式.
将图中的 型、 型、 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是 型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.
根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的样本容量是 ;
(2)补全条形统计图;
(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.