给出4个命题:
①若,则x=1或x=2;
②若,则
;
③若x=y=0,则;
④若,x+y是奇数,则x,y中一个是奇数,一个是偶数.
那么: ( )
A.①的逆命题为真 | B.②的否命题为真 |
C.③的逆否命题为假 | D.④的逆命题为假 |
记等差数列的前
项和为
,若
,
,则该数列的公差
()
A.2 | B.3 | C.6 | D.7 |
已知平面向量,
,且
,则
()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知,复数
(
是虚数单位),则
的取值范围是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(本小题满分14分)
设数列满足
,
,
.数列
满足
,
是非零整数,且对任意的正整数
和自然数
,都有
.
(1)求数列和
的通项公式;
(2)记,求数列
的前
项和
.
(本小题满分14分)
设,椭圆方程为
,抛物线方程为
.如图6所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).