如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O转动,轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m,电阻为r的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:
(1)重物匀速下降的速度v;
(2)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;
(3)若将重物下降h时的时刻记作t=0,速度计为v0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).
某司机驾驶一辆轿车以一定速度在平直高速公路上行驶。经过图示限速牌标志路段(该路段允许的最大速度为80km/h)时,发现前方有一障碍物,该司机采取紧急刹车措施,使轿车做匀减速直线运动,结果还是与障碍物发生碰撞。 在处理事故时,交警测得刹车时车轮与路面摩擦产生的痕迹为45m。若这种轿车急刹车时产生的加速度大小为10m/s2。试通过计算分析轿车是否超速?
如图所示,一个带电的小球从P点自由下落,P点距场区边界MN高为h,边界MN下方有方向竖直向下、电场强度为E的匀强电场,同时还有垂直于纸面的匀强磁场,小球从边界上的a点进入电场与磁场的复合场后,恰能做匀速圆周运动,并从边界上的b点穿出,已知ab=L,求:
(1)小球的带电性质及其电荷量与质量的比值;
(2)该匀强磁场的磁感应强度B的大小和方向;
(3)小球从P经a至b时,共需时间为多少?
如图所示,竖直放置的平行板电容器P板带正电,Q板带负电,两板间距d=5cm,两板电势差UPQ=25v,一质量m=0.2kg的带电小球A用绝缘细线悬挂于极板之间,小球静止时细线与竖直方向之间的夹角α=370。(sin37º=0.6,cos37º ="0.8" ,g取10m/s2)求:
(1)极板之间的电场强度E
(2)小球电性和电量
(3)若剪断细线,则小球的加速度
如图所示,一束电子(电量为e)以速度v0垂直射入磁感应强度为B,宽为d的匀强磁场中,电子穿出磁场的速度方向与电子原来的入射方向的夹角为30°,(电子重力忽略不计)求:
(1)电子的质量是多少?
(2)穿过磁场的时间是多少?
(3)若改变初速度大小,使电子刚好不能从A边射出,则此时速度v是多少?
如图,在区域I(0≤x≤d)和区域II(d<x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从P点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求
⑴粒子a射入区域I时速度的大小;
⑵当a离开区域II时,a、b两粒子的y坐标之差。