游客
题文

如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为 。现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样
速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求:(1)求粒子在匀强磁场中做圆周运动的半径。(2) 电场强度的大小。

科目 物理   题型 计算题   难度 中等
知识点: α粒子散射实验
登录免费查看答案和解析
相关试题

如图所示,在坐标系坐标原点O处有一点状的放射源,它向平面内的轴上方各个方向发射粒子,粒子的速度大小均为,在的区域内分布有指向轴正方向的匀强电场,场强大小为,其中分别为粒子的电量和质量;在的区域内分布有垂直于平面向里的匀强磁场,为电场和磁场的边界.为一块很大的平面感光板垂直于平面且平行于轴,放置于处,如图所示.观察发现此时恰好无粒子打到板上.(不考虑粒子的重力及粒子间的相互作用),求:

(1)粒子通过电场和磁场边界时的速度大小及距y轴的最大距离;
(2)磁感应强度的大小;
(3)将板至少向下平移多大距离才能使所有的粒子均能打到板上?此时ab板上被粒子打中的区域的长度.

如图所示,倾角为37°的光滑绝缘的斜面上放着M=1kg的U型导轨abcd,ab∥cd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面的立柱P、S、Q挡住EF使之不下滑。以OO′为界,下部有一垂直于斜面向下的匀强磁场,上部有平行于斜面向下的匀强磁场。两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2Ω,其余电阻不计。金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长。当剪断细线后,试求:

(1)细线剪短瞬间,导轨abcd运动的加速度;
(2)导轨abcd运动的最大速度;
(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin37°=0.6)

如图所示,某传送带装置倾斜放置,倾角=37o,传送带AB长度xo=l0m。有一水平平台CD高度保持6.45m不变。现调整D端位置,当D、B的水平距离合适时,自D端水平抛出的物体恰好从B点沿BA方向冲上斜面,此后D端固定不动,g=l0m/s2。另外,传送带B端上方安装一极短的小平面,与传送带AB平行共面,保证自下而上传送的物体能沿AB方向由B点斜向上抛出。(sin37o=0.6,cos37o=0.8)

(1)求D、B的水平距离;
(2)若传送带以5m/s的速度逆时针匀速运行,某物体甲与传送带间动摩擦因数1=0.9,自A点沿传送带方向以某一初速度冲上传送带时,恰能水平落到水平台的D端,求物体甲的最大初速度vo1
(3)若传送带逆时针匀速运行,某物体乙与传送带间动摩擦因数2=0.6,自A点以vo2=11m/s的初速度沿传送带方向冲上传送带时,恰能水平落到水平台的D端,求传送带的速度v′。

如图a所示,竖直光滑杆固定不动,上面套有下端接触地面的轻弹簧和一个小物体。将小物体在一定高度静止释放,通过传感器测量到小物体的速度和离地高度h并做出其动能-高度图b。其中高度从0.35m下降到0.3m范围内图像为直线,其余部分为曲线。以地面为零势能面,根据图像求:

(1)小物体的质量m为多少?
(2)轻弹簧弹性势能最大时,小物体的动能与重力势能之和为多大?
(3)把小物体和轻弹簧作为一个系统研究,系统具有的最小势能为多少?

如图所示,两个截面积都为S的圆柱形容器,右边容器高为H,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的质量为M的活塞。两容器由装有阀门的极细管道相连,容器、活塞和细管都是绝热的。开始时阀门关闭,左边容器中装有理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空。现将阀门缓慢打开,活塞便缓慢下降,直至系统达到新的平衡,此时理想气体的温度增加为原来的1.4倍,已知外界大气压强为p0,求此过程中气体内能的增加量。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号