(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨)标准煤的几组对照数据:
![]() |
3 |
4 |
5 |
6 |
![]() |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式 ,
)
已知函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并用定义证明;
(3)求函数的值域.
已知集合 .
(1)若,求实数
的取值范围;
(2)若,求实数
的取值范围.
已知函数为正常数。
(1)设当图象上任一点P处的切线的斜率为k,若
的取值范围;
(2)当的最大值。
((本小题满分14分)已知圆O:直线
。
(I)求圆O上的点到直线的最小距离。
|
(II)设圆O与轴的两交点是F1、F2,若从F1发出的光线经
上的点M反射后过点F2,求以F1、F2为焦点且经过点M的椭圆方程。
已知圆C经过P(4,– 2),Q(– 1,3)两点,且在y轴上截得的线段长为,半径小于5.
(1)求直线PQ与圆C的方程.
(2)若直线l∥PQ,且l与圆C交于点A、B,,求直线l的方程.